Input Variable Selection Using Parallel Processing of RBF Neural Networks
نویسنده
چکیده
In this paper we propose a new technique focused on the selection of the important input variable for modelling complex systems of function approximation problems, in order to avoid the exponential increase in the complexity of the system that is usual when dealing with many input variables. The proposed parallel processing approach is composed of complete radial basis function neural networks that are in charge of a reduced set of input variables depending in the general behaviour of the problem. For the optimization of the parameters of each radial basis function neural networks in the system, we propose a new method to select the more important input variables which is capable of deciding which of the chosen variables go alone or together to each radial basis function neural networks to build the parallel structure, thus reducing the dimension of the input variable space for each radial basis function neural networks. We also provide an algorithm which automatically finds the most suitable topology of the proposed parallel processing structure and selects the more important input variables for it. Therefore, our goal is to find the most suitable of the proposed families of parallel processing architectures in order to approximate a system from which a set of input/output. So that the proposed parallel processing structure outperforms other algorithms not only with respect to the final approximation error but also with respect to the number of computation parameters of the system.
منابع مشابه
Forecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm
Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...
متن کاملApplication of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)
The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...
متن کاملUsing PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes
A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...
متن کاملSimultaneous input variable and basis function selection for RBF networks
Input selection is advantageous in regression problems. For example, it might decrease the training time of models, reduce measurement costs, and circumvent problems of high dimensionality. Inclusion of useless inputs into the model increases also the likelihood of overfitting. Neural networks provide good generalization in many cases, but their interpretability is usually limited. However, sel...
متن کاملPrediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks
The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 7 شماره
صفحات -
تاریخ انتشار 2010